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 Abstract 

 In this article, a combination of Homotopy Analysis Method (HAM) and Integral Transforms 

(Laplace method) with less computation is proposed to solve nonlinear wave equations. 

Based on this method, schemes are developed to obtain approximation solutions of shock 

wave, soliton and travelling type solution for nonlinear wave equations. The proposed 

method is called Homotopy Analysis Transform Method (HATM). The results of applying 

this procedure to the studied cases show the high accuracy and efficiency of the new 

technique. The study represents the significant features of HATM also. 
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1. Introduction  

The investigation of exact solutions of nonlinear wave equations plays an important role in 

the study of nonlinear physical phenomena. Mathematical modelling of many physical 

systems leads to nonlinear ordinary and partial differential equations in various fields of 

physics and engineering. An effective method is required to analyze the mathematical model 

which provides solutions conforming to physical reality. Common analytic procedures 

linearize the system and assume that nonlinearities are relatively insignificant. Such 

assumptions sometimes strongly affect the solution with respect to the real physics of the 

phenomenon. Thus seeking solutions of nonlinear ordinary and partial differential equations 

are still significant problem that needs new techniques to develop exact and approximate 

solutions. 

Recently, many effective methods for obtaining exact solutions of nonlinear wave equations 

have been proposed, such as Bäcklund transformation method[1], homogeneous balance 

method [2,3], bifurcation method [4], Hirotas bilinear method [5], the hyperbolic tangent 

function expansion method [6,7], the Jacobi elliptic function expansion method [8,9], F-

expansion method[10-12], Adomian decomposition method [13, 14], Homotopy analysis 
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method [15-16], Homotopy perturbation method [17, 18], Variational iterative method [19, 

20], Laplace decomposition method [21-24], modified Laplace decomposition method [25, 

26]and so on 

 

In this paper we use the homotopy analysis method combined with the Laplace transform for 

solving nonlinear wave equations. It is worth mentioning that the proposed method is an 

elegant combination of the homotopy analysis method and Laplace transform. The advantage 

of this proposed method is its capability of combining two powerful methods for obtaining 

rapid convergent series partial differential equations.  

2. Basic Idea of Homotopy Analysis Method 

 The homotopy analysis method (HAM) is an analytical technique for solving nonlinear 

differential equations. HAM proposed by Liao (Liao 1992) [15], this technique is superior to 

the traditional perturbation methods in that it leads to convergent series solutions of strongly 

nonlinear problems, independent of any small or large physical parameter associated with the 

problem (Liao 2009) [27]. The HAM provides a more viable alternative to non perturbation 

techniques such as the Adomian decomposition method (ADM) (Adomian 1976; 1991) [28, 

29] and other techniques that cannot guarantee the convergence of the solution series and 

may be only valid for weakly nonlinear problems (Liao 2009) [27] 

In HAM, a system can be written as:  

   0, txEN                                                          (1) 

where N is a nonlinear operator,  txE , is unknown function of x and t,  txE ,0 is the initial 

guess, 0 an auxiliary parameter and   is a auxiliary linear operator. Also,  1,0q  is an 

embedding parameter. We can construct a Homotopy as follows 

         qtxNqtxEqtxq ;,,;,1 0                                  (2) 

when q = 0, the zero-order deformation become  

   txEtx ,0;, 0  

when 1q , since 0 , we get solution expression as follows 

   txEtx ,1;,   

The embedding parameter q increases from 0 to 1. Using Taylor's theorem,  qtx ;, can be 

expanded in a power series of q as follows 

      n

n
n qtxEtxEqtx 






1

0 ,,;,                                 (3) 
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Where 

     
0

;,
!

1,






q

n

n

n q
qtx

n
txE 

                                       (4) 

If auxiliary linear operators, the initial guesses, the auxiliary parameters, are so properly 

chosen, then the series (3) converges at q = 1 and  

     





1

0 ,,;,
n

n txEtxEqtx                                    (5) 

Differentiating (2) n times with respect to the embedding parameter q and then setting q = 0, 

we have the so-called nth order deformation equation 

       txERtxEqtx nnn ,,;, 10 


                                    (6) 

Using the last equation the series solution is given by 

 

       txERLtxEtxE nnnn ,,, 1
1

0 



     (7) 

Where  

    
  

0
1

1

1
;,

!1
1,






 





q
n

n

nn q
qtxN

n
txER 

    
(8) 

And    








1n    0
1>n    1

n
      

(9)
 

2.1 Homotopy Analysis Transform Method: 

We consider a general nonlinear partial differential equation 

      0),(),(),(  txENtxEtxE ji                (10) 

Where i is a linear operator 
i

i

t
 (i=1, 2...), i is a linear operator 

j

j

x
 (j=0, 1, 2...), and N is a 

nonlinear operator. The initial conditions are also as 

)()0,( xgxE     )(),( xhtxEt   

Applying the Laplace transforms and we obtain (i =2) 

       ),(),(1)()(),( 22 txEtxENL
pp

xh
p
xgtxEL j                  (11) 

Now we embed the HAM in Laplace transform method. Hence we may write non linear 

equation in the form 

  0),( txEN  
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          );,();,(1)()();,();,( 22 qtxqtxNL

pp
xh

p
xgqtxLqtxN j  

         
(12)

 
Where N is a nonlinear operator, ),( txE is unknown function of x and t, 0  an auxiliary 

parameter and   is an auxiliary linear operator. Also,  1,0q is an embedding parameter. 

We can construct a Homotopy as follows 

 

         qtxNqtxEqtxLq ;,,;,1 0                                   (13) 
when q = 0, the zero-order deformation become  

   txEtx ,0;, 0  

when 1q , since 0 , we get solution expression as follows 

   txEtx ,1;,   

The embedding parameter q increases from 0 to 1. Using Taylor's theorem,  qtx ;, can be 

expanded in a power series of q as follows 

      n

n
n qtxEtxEqtx 






1

0 ,,;,
       

                 (14)
 

Where 

   
0

;,
!

1,





q
n

n

n q
qtx

n
txE                    (15)  

If auxiliary linear operators, the initial guesses, the auxiliary parameters, are so properly 

chosen, then the series (14) converges at q = 1 and  

     





1

0 ,,1;,
n

n txEtxEtx
    (16) 

Differentiating (13) n times with respect to the embedding parameter q and then setting 1q

we have the so-called nth order deformation equation 

       txERtxEqtxL nnn ,,;, 10 


                  (17) 

Using the last equation the series solution is given by 

 

       txERLtxEtxE nnnnn ,,, 1
1

1 


 


    (18) 

Where  

    
  

0
1

1

1
;,

!1
1,






 





q
n

n

nn q
qtxN

n
txER 

        
(19)  

and     
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






1n    0
1>n    1

n
                            

(20) 

2.3 Mathematical formation:-  

 Let us consider the non linear term xEE  , in the fluid equation of motion  

F
x
EE

t
E









                                                             
(21) 

From the Fourier analysis techniques, a term generates mode- mode coupling and higher 

temporal and spatial harmonics, in real space; this means a deformation of the wave form.   

We lead to an eventual overtaking of the fluid elements and the breaking up of the wave. 

 The presence of the self-consistent field F on the right hand side often produced an 

effect to prohibit such an overtaking, at least within some limited time scale. If we combine 

the force term with the field equation, F may be expressed as a function of E  also. The 

lowest significant linear contribution of such a term will be 2222 tEorxE  .For a passive 

medium, these terms represent dissipation. If we take 22 xE  as an example the equation 

may be written   

02

2













x
E

x
EE

t
E


                                                         

(22) 

Where α is a positive constant having a dimension of TL2 . This equation generally called 

Burgers equation. As the steepening progress, the higher derivative term introduced above 

contributes more and when this term becomes comparable to the non linear term, the 

steepening is stopped. 

 In the absence of dissipation, the lowest significant linear contribution of the force 

term will be 33 xE  .This term represent the lowest order dispersion effect. If we introduce 

this term into the equation (21) then   

03

3













x
E

x
EE

t
E 

                                                           
(23) 

Where β is a constant having a dimension of TL3 .this called the Korteweg-de Vries (KdV) 

equation. 

 

3.  Application  

 In order to elucidate the solution procedure of the homotopy Analysis transform 

method (HATM), we solve two examples in this sections which shows the effectiveness and 

generalizations of our proposed method. 

 

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 
ISSN 2229-5518  

2100

IJSER © 2017 
http://www.ijser.org

IJSER



 Example 1:- Consider the equation (22) 

02

2













x
E

x
EE

t
E


 

with initial condition    
















2

tanh10, xxE
  

Applying Laplace transformation we have  

 

   0
2

tanh11,
2

2















































 x

x
E

x
EELtxEL                                     

(24)                                                                                                                         

We define a nonlinear operator according equation (12) 

    






































 2

2 );,();,();,(1
2

tanh1);,();,(
x

qtx
x

qtxqtxL
p

x
p

qtxLqtxN 



   
(25)

 

Using above definitions, we can construct a Homotopy as follows 

         txEqtxLqqtxNq ,;,1;, 0                                       (26) 

Where  1,0q  ,  tx,0  is an initial guess of  tx, and  qtx ;, is unknown function. 

When  0q  and 1q we have 

   txEtx ,0;, 0  ,    txEtx ,1;,    
The nth order deformation equation is  

       txERLtxEtxE nnnnn ,,, 1
1

1 


 


                              (27) 
Where 

           















































 





  




2
tanh11

)1, 2
1

21

0

1
11

x
pxx

L
p

LtxER n
n

n

k

kn
knnn

         (28) 

Obtain the series solution (using Mathematica 5.2 package) 

  




















2
tanh1

2
, 2

3

1
xttx 

                                                    
(29)                              

 











































2
tanh

2
1

2
tanh1

2
,

2
2

3

2
xtxttx 

                             
(30) 

…….. 
The solution is  

   



  txtxE 





2

tanh1,
                                                       

(31) 

Where 1  
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This expression represents shock solution with the shock speed, shock height and shock 

thickness given by ,  and 1  respectively. The shock solution appears because of the 

introduction of the dissipative term, which increases the entropy. 

Example 2:- Consider the equation (23)
 
 

 
03

3













x
E

x
EE

t
E 

                                                  
(32) 

With initial condition  



























2
30, 2 xSechxE




   

Applying Laplace transformation we have  

   
  0

2
31),( 2

3

3








































xSech

px
E

x
EEL

p
txEL





                      

(33) 

We define a nonlinear operator according equation (12) 

    






































 3

3
2 );,();,();,(1

2
3);,();,(

x
qtx

x
qtxqtxL

p
xSech

p
qtxLqtxN 




          
(34) 

The nth order deformation equation is  

       txERLtxEtxE nnnnn ,,, 1
1

1 


 


  
Where 

           















































 





  2

31
)1, 2

3
1

31

0

1
11

xSech
pxx

L
p

LtxER n
n

n

k

kn
knnn 




      (35) 

Obtain the series solution (using Mathematica 5.2 package) 












































2
tanh

2
3 22

1
xxSechtE











                                       

(36) 

CONCLUSIONS: In this paper, the homotopy analysis transform method (HATM) is 

successfully applied to solve many nonlinear problems. It is apparently seen that HATM is 

very powerful and efficient technique in finding analytical solutions for wider class of 

problems. They also do not require large computer memory and discretization of variable x.  
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